20世纪90年代以来,我国渔业生产进入快速发展时期,集约化规模不断扩大,致使我国水产品总产量自1990年起跃居世界首位,但是在强劲发展势头的背后,我们同时也看到飞速发展的水产养殖所带来的负面影响一养殖水体严重污染,生态平衡遭到破坏。水体污染促使病原体大量滋生,进而引起各种水生动物疾病的频繁发生,新病原层出不断,抗生素的使用一方面可以抑制甚至杀死病原体,另一方面又会引入新的污染及产生新的耐药菌株,如此形成养殖生产中的恶性循环,从而制约水产养殖业的发展,因此控制养殖水体污染,维护水体的生态平衡,实现水体的良性循环已势在必行,而采取营养调控的方法降低养殖水体污染为实现这一目标的重要举措。
1 饲料对养殖水作的影响
水产养殖动物最大的特点是生活于水中,因此饲料只有投入到水中才能为鱼虾所摄食,但饲料入水后会受到各种环境因素的影响(水温、渗透压、水柱冲击等)而发生系列变化,如:溶失、崩裂、溶胀等,饲料稳定性越差,饲料在水中的损失越多。陈四清报道,配合饲料入水后5 mim,重量损失12.4%~13.8%,120mim可达17.0%~23.9%;Burford等(2001)研究了对虾摄食后含氮废弃物的趋向,对对虾援食后所产生的溶解性氮废弃物进行了描述和定量分析,认为水体中可溶性氛有三个主要来源:鳃排泄、从颗粒饲料中溶失及从虾粪便中溶出,从颗粒饲料中溶出的溶解性有机氛很难被微生物利用。那么即使被鱼虾摄取的饲料中损失也颇为严重。Rich等(1996)研究发现,鱼对各种鱼粉的表现利用率为19.5 %~50.5%,植物蛋白磷利用率30.7%,不能被利用的磷排入水体中;Mallek等(1999)认为,生产1kg大菱鲆鱼向环境中输入51g总氮,8.7g总磷;Beveridge等报道,每摄食1kg饲料,红鳟大约产生269 g粪氮;张硕等(1999)研究了中国对虾氮收支情况,指出不同盐度下中国对虾生长氮占摄食氮的百分比为4.88%~6.5l%,排泄氮占摄食氮百分比为60.34 %~83.47 %;另据资料报道,鲑鱼饲喂每千克饲料含磷 12g的日粮后,磷的消化率达50 %,粪中排出磷6 g,体增磷4 g,尿中排出磷6 g;继鲫鱼类的网箱养殖,饲料中75见的总氮和总磷排入水环境;欧洲人们在养殖鲑鱼的过程中发现,投入的饲料约有80的氮被鱼类直接摄食,摄食的部分中仅有25%用于鱼体生长,其余的65%用于排泄,10%作为粪便排出体外,这就意味着投入的饲料仅有l/5被有效利用,其余部分以污染物形式排入水环境中。
综合以上资料大致可看出,在投喂的饲料中约有10%~20%直接进入水环境不能被摄取,在被摄食的饲料氮中,约有20%~25%氮用于生长,75%~80%氮以粪便和代谢物形式排入水环境,被援食的饲料磷中,约有25%~40%磷用于生长,60%~75%磷排入水环境。水体中鱼虾排泄物和残饵的大量增加,使水环境中物理和水化学指标及生物学因子发生改变,浮游生物数量增加,微生物含量增高,引起水体自净能力降低,导致水体富营养化或水质恶化。
2 降低养殖水体污染的营养调控措施针对饲料可引起水体污染这一状况,实施营养调控措施将水体污染降到最低限度是完全可行的,主要措施如下:
2.l 氮的营养调控养殖水体污染的很大一部分原因是由于水体中输入的氮量过高,因此提高饲料氮的利用率,降低输人水体中的氮的浓度,可在某种程度上控制污染。
2.1.1应用营养平衡理论按照可消化营养素研制全价配合饲料比如可采用理想氨基酸模式制定饲料配方,制作饲料时充分考虑到选取原料的消化吸收率,以提高饲料利用率。
2.1.2 利用脂肪对蛋白质的节约作用,降低饲料中蛋白质含量,增加脂肪含量,以减少氮的排泄脂类的营养功能之一是节约蛋白质。Helland(1998)研究指出,庸鲽饲料中的脂类对蛋白质节省作用明显,而对生长率、饲料利用率影响不明显;付世建等(2001)研究了南方鲶饲料脂肪对蛋白质的节约作用,发现高脂肪、低蛋白饲料组鱼体特定生长率、饲料转化率与低脂肪高蛋白饲料组无明显差异,而蛋白质效率高于后者。
2.1.3利用氨基酸的互补作用,向饲料中添加游离氨基酸以平衡营养,从而提高现有饲料蛋白质的消化吸收率,减少氮排泄量Coyle等(2000)研究了大口黑护鲈鱼料中添加赖氨酸、蛋氨酸的效果,指出投喂蛋氨酸添加组的鱼饲料系数降低0.8,明显提高了饲料转换率;Suprayudi(2000)用75%大豆粕饲料替代鱼粉添加精氨酸饲喂丝足鱼,结果生长率、饲料系数、蛋白质效率及蛋白质和脂肪蓄积率与50%替代组相同,说明精氨
[1] [2] [3] 下一页