也就是色彩的逼真程度,演色性越高的光源对色彩的表现越好,所看到的色彩也就越接近自然色,演色性越低的光源对色彩的表现也越差,我们所看到的色彩偏差也越大。演色性的高低关键在于该光线的“分光特性”,可见光的波长在 380nm—760nm之间的范围内,也就是我们在光谱中见到的红、橙、黄、绿、青、蓝、靛、紫的范围。如果光源所放射的光所含各色的比例和自然光相近,则我们眼睛所看到的色彩也就比较越逼真。
5.经济效率
光源的效率是以其所发出光的光速除以其消耗功率所得的值:光源动率(lm/w)=光速(lm)/消耗功率(W)。
·各种光源功效及平均演色评价值(Ra)一览表
·水族照明应用
在我们瞭解以上光照的基本常识以后,接着在水族箱中探讨照明对植物与鱼类在相对光线下的关系:
1.植物方面
植物表面有许多行光合作用的细胞群用以进行光合作用,水族箱中的水草大多生长在浅水处,所需光量大,为了进行最有效率的光合作用,水草以补光的方式,也就是红色细胞吸收绿光成翠绿的植物或绿色细胞吸收红光成为偏红的植物。
光线在水草的光合作用中扮演了一个相当重要的角色,对水草的生长有直接的影响。光合作用所产生的碳水化合物(醣类)是水草赖以为生的养料,所以在水草生长的过程中,光线是不可缺少的能源。因此人工光源的配合使用便成了水草栽培的成功与否最重要的决定因素之一。
水草不仅是需要一定程度的光照,而且也需要一定程度的光质。水草必须从光照中去选择适合它们能够进行光合作用以及同化作用的光谱,而不是所有太阳光谱线都能够应用于这两个作用,根据实验显示水草光合作用最适当的光质是波长位于蓝色和红色光谱两个区域的谱线,因此若要以人工照明装置替代天然光线,则人工光源的谱线应接近蓝光区或红光区的谱线最为恰当。
2.鱼类方面
光照对鱼类的色素体的成长与维生素D的沉淀与吸收有着绝对的关系,而由于光照的关系,所以许多鱼类的色素细胞在背部聚集较多,而腹部的色彩就比较浅,以大多数的珊瑚礁鱼类而言,几乎都在身体布满鲜艳而亮丽的色彩,这些都是色素细胞受阳光照射而沉淀的缘故。
除了海水鱼之外,淡水鱼同样有相似的原因,我们知道很多鱼类在发育时期有一段时间必须接受日光照射,否则它们的色素体细胞无法沉淀与吸收,当它们长大以后,鱼体就会变成白化现象。
3.无脊椎动物方面
软体动物大都生长在岩礁区,从水深3米到20米是这些软体动物最多也是最漂亮的地区,在这个深度,太阳光是属于强光区,所以大部分软体动物一定是需要强力的光源。
活珊瑚主要是由名为水螅的生物自海中吸收钙的成份逐渐长大,同时在细胞周围还有无数的微细海藻,海藻色素包括叶绿素、叶黄素及黄色素,已知珊瑚上的五颜六色是由光合色素有关的色素类的形成。在岩礁生态缸中的海葵,它们有生理时钟般的作息,当光源暗了,它们便合起来,光源亮了,它们就伸展柔软的触须觅食活动。如果没有光源或光源不足的时候,它们就会加速死亡。
·影响光照的因素
1.在平静无波的水中,有10%的阳光因水表面热反射而散失,若水面有波纹,进入水中的光线必定更少。
2. 光线会因为水位深度和折射而减少。所以,水位越深光线越弱。大部分的淡、海水观赏鱼大都生长在水面至100米的恒光层,而水面至600米深为有光层,600米
上一页 [1] [2] [3] 下一页